Ceramic Bearings and Revision Risk for Late Dislocation

R.P. Pitto, MD, PhD

Department of Orthopaedic Surgery
Middlemore Hospital and Manukau Surgery Centre
University of Auckland, New Zealand
Acknowledgements

Prof. Laurent Sedel
Dr. Chris Frampton
The NZ Arthroplasty Registry
Disclosure

CORR
CeramTec
Introduction

• Dislocation is a major complication after THA and constitutes a prominent reason for revision surgery
• Multiple studies have focused on risk factors for late dislocation, but bearing surface has not been extensively studied
• Currently there is conflicting evidence about bearing surfaces and dislocation rates
Introduction

The incidence of dislocation is highest in the first year after arthroplasty, and then continues at a constant rate over the life of the implant

• Early (<1yr) versus late dislocation (>1yr):
 – Early: patient and surgical factors
 – Late: biological factors
Objective

• To determine whether the bearing surface is a risk factor for late revision due to dislocation in primary THA
Methods

NZ Arthroplasty Registry:

– Since 1999
– 100,315 primary THJR (16-year Report)
– Dislocation most common cause for revision (26.5%)
Methods

Exclusion criteria:

– Resurfacing arthroplasty
– Revision arthroplasty

• Primary endpoint was revision for late dislocation (late defined as >1 year postOP)
Material and Methods

- 73,386 THRs fulfilling inclusion:
 - 73,386 hips >1 year postOP
 - 65,387 hips >2 years postOP
 - 42,086 hips >5 years postOP
 - 12,967 hips >10 years postOP

- Mean age 68.9 years
- Mean 10-year Follow-up
- 53.2% female
- 88% OA
Material and Methods

• Surgical Approach:
 - Posterior 65.3%
 - Lateral 28.3%
 - Anterior 4.2% (other 2.2%)

• Bearing surfaces:
 - MoP 53,331
 - CoP 14,093
 - CoC 8,177
 - MoM 5,910
 - CoM 461
Results

• 3130 (4.3%) hips revised for any cause
 – Rate of 0.7/100 component / years

• 836 (1.1%) revised for dislocation
 – Rate of 0.19/100 component / years

• 470 (0.65%) revised for dislocation >1 year
 – Rate of 0.11/100 component / years
Multivariate Analysis

CoC HR versus

- CoP
 (HR 2.10; 95% CI 1.12 – 3.94, p=0.021)

- MoP
 (HR 1.76; 95% CI 0.94 – 3.28, p=0.075)

Adjusted for age, gender, head size, surgical approach
Results

- There were statistically significant lower rates of revision for dislocation in all age groups with >28mm CoC bearings than:
 - MoM (HR = 0.36; 95% CI 0.20 – 0.67, p= 0.004)
 - CoP (HR = 0.51; 95% CI 0.30 – 0.89, p= 0.018)
 - MoP (HR = 0.55; 95% CI 0.33 – 0.93, p= 0.027)
Head size >28mm and age <65 years

Head size >28mm and age ≥ 65 years
Head size ≤28mm and age <65 years

Head size ≤28mm and age ≥65 years

There were more revisions in CoC than MoM THAs in younger patients and smaller head size (< 65 years, 28 mm) (HR 0.29; 95% CI 0.12–0.71; p = 0.014)
Discussion

- This 10-year Registry analysis shows low rates of revision for late dislocation with CoC THRs
- Confirms Australian Registry finding regarding the increased risk of revision for late dislocation in patients younger than 65 yrs with 28mm CoC
- Confirms findings of previous paper showing low rates of late dislocation with 32mm CoC

Sexton SA et al.: CoC and risk or revision due to dislocation after THA. JBJS 91B: 1448-53, 2009

Discussion

• Late dislocations may be influenced by biological factors:
 – analysis of tissue reaction to ceramics has shown small numbers of macrophages, few foreign body type giant cells and occasional lymphocytes
 – polyethylene implants promote extensive foreign body type inflammatory changes

Discussion

Late dislocations may be influenced by biological factors like *Pathology of the Pseudo-Capsule*:

- MoP pseudocapsules exhibit significantly higher levels of inflammatory markers than CoC
- inflammatory reaction to polyethylene and metal wear particles results in fluid expansion and capsule dissociation

Message to Take Home

Ceramic Bearings:

– Low rates of revision for late dislocation
– Best outcome with 32mm bearing surfaces